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Learning Visual and Motion Aware 3D Model Representations
for Semantic Retrieval

Prompt Retrieved Models

“A plant in a pot”

“A wooden desk 
that is retractable”

Image of island with palm trees and 
sandy beach with water around it

Video of a person running

(a) Examples of 3D models retrieved using text, image, and video prompts (b) High-level methodology for learning unified 3D model representations

Figure 1: 3D model retrieval examples and methodology. (a) Examples of 3D models retrieved for different input prompts.
Prompts can be textual (e.g., descriptions of visual or dynamic features such as a “retractable table”), or based on sample images
and videos that capture visual appearance or motion. (b) High-level methodology for learning 3D model representations. Each
3D model is represented using multiview images to capture appearance and videos to capture dynamics. A trainable multimodal
fusion model combines the outputs of pretrained encoders into a unified embedding space, enabling cross-modal retrieval.

ABSTRACT

VR content creators today face lengthy trial-and-error cycles when
searching for 3D models, which relies heavily on manually anno-
tated metadata. However, this approach struggles to capture the rich
visual and dynamic details inherent to 3D models. Prior work has
attempted to address this by rendering models as sets of images, but
has largely remained restricted to category-level search and static
geometry. In VR environments where asset behavior is often as im-
portant as appearance, we present a visual and motion aware 3D
retrieval method that represents each model through multiview ren-
ders and short animations, extending search beyond static geome-
try to include dynamic behaviors critical for VR applications. Pre-
trained image–text and video–text encoders extract features that are
combined into a unified embedding by training a lightweight mul-
timodal fusion model. This enables 3D model retrieval from text,
images, and videos without requiring abundant and detailed ground
truth data, supporting more nuanced and semantically meaningful
search. On text queries referencing both appearance and motion,
our method achieves a 23-percentage-point improvement in top-5
retrieval accuracy on the Objaverse dataset [4], while also attaining
competitive accuracy on the ModelNet40 dataset [35] and maintain-
ing robustness as the model library size scales. A user study further
shows that participants strongly preferred our retrievals compared
to the one used by Sketchfab, one of today’s most widely used 3D

repositories. To support future work, we release multi-view ren-
ders, animation clips, and 500 manually annotated visual and mo-
tion aware captions for a subset of Objaverse.

Index Terms: Multimodal Machine Learning, Virtual Reality

1 INTRODUCTION

The rapid growth of virtual reality (VR) and immersive applications
has created a strong demand for effective search and retrieval of 3D
models. Current solutions like online repositories (e.g. Sketch-
fab [30]) or asset libraries in 3D authoring tools (like Unity[32]
and Unreal[5]) largely rely on metadata-based search, where results
are organized by manually assigned tags or broad category labels.
While effective for coarse filtering, these approaches fall short in
supporting natural language queries and in capturing the semantics
of how 3D models look and move. As a result, creators often face
long trial-and-error cycles when sourcing assets for interactive ex-
periences. In addition, with the growing use of Large Language
Models (LLMs) in authoring 3D scenes, being able to semantically
retrieve 3D models is essential.

Recent advances in Vision Language Models (VLMs) have
transformed retrieval in 2D domains, enabling robust alignment be-
tween text, images, and video. However, their potential for 3D con-
tent remains underexplored. Prior work primarily focuses on static
shape descriptors or learned embeddings of geometry, with limited
consideration of motion. This neglects a critical aspect of 3D mod-
els in VR, where many models are designed to be animated, and
their dynamic behavior is central to their meaning (e.g., a “running
dog” vs. a “sleeping dog”).
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Unlike images and videos on the Internet, there is a massive
scarcity of richly annotated 3D models, particularly those with an-
imations or motion information. Public repositories typically pro-
vide only minimal textual descriptions or user-assigned tags, which
rarely capture fine-grained visual or motion semantics such as “a
person wearing a black baseball cap walking”, or ”a three ducks
of different sizes swimming across a pond”. This lack of detailed
captions makes it difficult to train dedicated 3D–text encoders at
scale, in stark contrast to the abundance of data available for im-
age–text or video–text learning. The problem is further amplified
in VR contexts, where asset behavior is often as important as asset
appearance. To overcome this, we adopt a proxy strategy: rather
than learning directly from scarce 3D annotations, we generate 2D
renderings and animated sequences of each model, enabling the di-
rect reuse of pretrained image and video retrieval models.

In our work, we present a visual and motion aware 3D model
representation learning and retrieval strategy that treats assets as
multimodal entities composed of both visual features and dynam-
ics. Each model is represented through a combination of static mul-
tiview images and short rendered animation clips, which are aligned
with natural language queries using state of the art pretrained im-
age–text and video–text retrieval models. Surprisingly, we find that
lightweight fusion strategies, such as simple score averaging across
modalities, consistently outperform more complex joint embedding
schemes. These results highlight motion as an essential retrieval di-
mension while also showing that simple integration methods with
lower resource requirements can be highly effective.

We validate our approach through both benchmarks and user
studies. Quantitatively, we compare our retrieval accuracy against
prior state-of-the-art methods and ablated variants of our model.
Our method achieves a 23-percentage-point improvement in top-5
retrieval accuracy (87% vs. 63.8% for the next best prior work)
on the Objaverse database [4] for prompts involving both visual
and motion cues, and competitive performance (85%) on the Mod-
elNet40 database[35]. The gains are most pronounced on larger
datasets, highlighting that our approach learns more discriminative
features and remains robust as the corpus scales. Qualitatively, we
conduct a user study comparing our system to Sketchfab, the in-
dustry standard for 3D model search. Participants consistently pre-
ferred our results, rating our retrievals higher (3.88 vs. 3.07 out of
5) and scoring our animations substantially better (3.65 vs. 2.05)
for alignment between prompts and retrieved models. These find-
ings demonstrate the practical benefits of motion-aware search in
real-world VR workflows. Finally, to support future research, we
release a dataset of rendered images and video clips for Objaverse,
together with 500 manually annotated motion-aware captions, pro-
viding a compact yet valuable benchmark for the community.

Our key contributions are:

• A 3D representation learning strategy that leverages mul-
tiview images and short animation clips, enabling the reuse
of powerful pretrained image and video language models.

• Identification of motion as an essential retrieval dimension,
showing that dynamic behavior is critical for aligning lan-
guage with 3D model semantics.

• A benchmark and dataset for text-to-3D retrieval, includ-
ing 26k multi-view images and animation clips, as well as 500
detailed motion-aware captions for Objaverse. 1

• Quantitative benchmarks and user studies showing the effec-
tiveness of multimodal fusion and the value of semantic re-
trieval over Sketchfab.

1Data and Code will be released with the camera ready paper

2 RELATED WORK

2.1 3D Representation Learning
Learning effective 3D representations has been a long-standing
goal, with approaches spanning geometry-based, view-based, and
multimodal paradigms. Early 3D encoders learn directly from ge-
ometry, capturing invariances to permutation, viewpoint, and rigid
transforms. Representative models include PointNet/PointNet++
[25, 26], DGCNN [34], and multi-view CNNs such as MVCNN
[31] and MVTN [9]. Subsequent work explored self-supervised
and transformer-based pre-training [36, 40, 23], improving robust-
ness but remaining limited to category-level semantics and under-
representing fine-grained or open-vocabulary attributes, primarily
due to the lack of richly annotated training data.

The rise of large-scale pretraining has shifted focus toward gen-
eralizable semantic encoders aligned across modalities. Image–text
models like CLIP [28] and ALIGN [13], video–text encoders such
as VideoCLIP [37] and InternVideo [33], and multimodal spaces
like LanguageBind [45] and ImageBind [8] enable zero-shot com-
parison across images, videos, and text. Although training analo-
gous encoders directly on 3D models is not yet feasible due to lim-
ited large-scale 3D–text data, these image- and video-text models
provide transferable priors that we leverage as building blocks.

To transfer these priors to 3D, view-based methods render ob-
jects and aggregate 2D features. PointCLIP [42], CLIP2Point [11],
and CLIP-Goes-3D [10] pool CLIP features across multiviews,
while captioning pipelines such as CAP3D [19] leverage renderings
to produce natural-language supervision. More recently, language-
anchored pretraining approaches, like ULIP [38] and OpenShape
[17], jointly align 3D, image, and text encoders to support open-
vocabulary retrieval and zero-shot tasks [43, 15, 16].

Despite these advances, most methods operate on static geome-
try or image sets, limiting their ability to distinguish models with
similar appearance but different dynamics. Moreover, reliance on
synthetic captions may introduce noise through hallucinated at-
tributes. Our work targets this gap by combining pre-aligned im-
age and video encoders with pooled multiview renderings and short
turntable clips to learn motion-aware 3D embeddings without re-
quiring explicit 3D captions.

2.2 3D Search and Retrieval
3D search systems span a spectrum of approaches, from geometric
similarity and structured metadata to context-aware and language-
driven retrieval. Early methods focused on shape descriptors and
sketch-based search [7, 22, 20, 14], later extended by scene context
and relational reasoning [6]. Metadata-driven systems leveraged
tags, parts, and annotations, which are mostly manually annotated,
for structured queries [44, 21, 1].

Recent work has shifted toward embedding-based retrieval using
multimodal encoders aligned across text, image, and 3D modalities
[38, 17, 10]. These models support open-vocabulary and zero-shot
retrieval, and have been integrated into authoring tools for VR scene
generation and layout composition [41, 39, 12]. In immersive set-
tings, such systems allow users to retrieve, place, and manipulate
3D models using natural language or high-level intent, bypassing
traditional menu-based interfaces. For example, VRCopilot and
Holodeck support compositional scene control through voice or text
prompts, enabling iterative scene editing and spatial reasoning in
real time. Other frameworks like SceneSuggest and ATISS [29, 24]
incorporate learned spatial priors to recommend plausible object
placements, while diffusion-based models [18, 27] generate real-
istic room layouts conditioned on functional context. These tools
reflect a broader trend toward multimodal, context-aware VR au-
thoring workflows that unify retrieval, layout, and interaction into
a single semantic interface. Together, these techniques reflect the
growing convergence of 3D understanding, semantic alignment,
and interactive content creation.
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3 OUR APPROACH

Our goal is to enable text-driven retrieval of 3D models by learning
multimodal embeddings that capture both appearance and motion.
Unlike images or videos, 3D models rarely come with high-quality
natural language descriptions, making it difficult to train a dedi-
cated 3D-text encoder. To address this, we adopt a proxy strategy:
we render 3D models as multiview images and short animation
clips, and leverage powerful pretrained encoders that jointly aligns
text, image, and video in a shared representation space. In our im-
plementation we use the LanguageBind [45] pretrained encoders,
but the method is encoder-agnostic: any model that provides a uni-
fied image–video–text space can be swapped in without changing
the pipeline. This design supports text, image, and video based re-
trieval of 3D models, enabling more expressive search (Fig. 1b).
This section details how we learn these multimodal 3D representa-
tions from the individual modalities (Fig. 2).

3.1 Multiview Image Representation
For each 3D model, we generate M = 6 canonical renderings from
fixed orientations (±x,±y,±z). We chose these views because they
give uniform coverage of all principal sides with minimal redun-
dancy, whereas fewer views miss at least one side. Each view Im is
encoded using the LanguageBind image encoder fI :

zm = fI(Im), zm ∈ Rd , m = 1, . . . ,6. (1)

While each zm captures a valid perspective of the model, they
contain overlapping information and may emphasize different fea-
tures. To form a single representation zimg, we train lightweight
fusion models that learn to combine the six views. We experiment
with:

• MLP fusion (order-invariant): a lightweight fusion model
that scores each view with a shared per-view MLP, softmax-
normalizes the scores, and forms a symmetric weighted sum
before a final projection. This parameter-efficient design is
robust on smaller datasets.

• Attention fusion (content-adaptive): a self-attention layer
over the six view embeddings that models inter-view interac-
tions and assigns content-aware weights, emphasizing views
with unique or discriminative cues; the extra flexibility typi-
cally helps on larger datasets at the cost of more compute.

Training objectives. Because high-quality text annotations for
3D models are rare, we train the fusion model without paired cap-
tions using two self-consistency losses.
Cosine Similarity (intra-model). We encourage the fused repre-
sentation to stay close to its constituent views:

Lcos = 1− max
m∈{1,...,6}

cos
(
zimg,zm

)
. (2)

Batch-Wise Contrastive Loss (inter-model). Let the batch size be
B. For each model i ∈ {1, . . . ,B} we sample one positive view in-
dex m+

i uniformly from {1, . . . ,6} and take the corresponding nor-

malized embedding vi =
zi,m+

i
∥zi,m+

i
∥ . We also L2-normalize the fused

embedding oi =
zimg,i

∥zimg,i∥ . We form the logits matrix

ℓi j =
o⊤i v j

τ
, i, j ∈ {1, . . . ,B}, (3)

and apply cross-entropy with identity labels (diagonal as positives,
off-diagonals as negatives):

Lctr =− 1
B

B

∑
i=1

log
exp(ℓii)

∑
B
j=1 exp(ℓi j)

. (4)

where τ is a temperature hyperparameter.
For each fused embedding, the randomly chosen view of the

same model is treated as the positive, while the corresponding views
from all other models in the batch serve as negatives.
Total objective., where λcos and λctr are the weights representing
how much each loss contributes to the total loss.

Limg = λcos Lcos +λctr Lctr. (5)

3.2 Video Representation
To capture dynamics, we render a short animation clip V for each
3D model and encode it with the frozen LanguageBind video en-
coder fV :

zvid = fV (V ), zvid ∈ Rd . (6)

This representation captures temporal semantics (e.g., “walking,”
“flying,” “collapsing”) that static images cannot convey. We chose
a 6 seconds video clip given our dataset, as the animations were
shorted than that time frame, although this length can be tuned
given the dataset and the encoder’s context window.

3.3 Multimodal Fusion
Finally, we construct a unified multimodal embedding z3D that inte-
grates both zimg and zvid. Although we experimented with trainable
fusion layers (results in Table 1), similar to the multiview image
fusion model, we observed that a simple average provided consis-
tently higher accuracy:

z3D =
1
2
(zimg + zvid). (7)

This result suggests that pretrained encoders are already well
aligned across modalities, and that computationally lightweight fu-
sion is both effective and robust. Moreover, because z3D lies in the
same embedding space as the pretrained text encoder, retrieval can
be performed directly.

3.4 Multimodal Retrieval
At query time, a natural language description T is encoded with
the LanguageBind text encoder fT to obtain ztext = fT (T ). Each
model’s multimodal embedding z3D is then compared with ztext in
the shared space using cosine similarity:

sim(z3D,ztext) =
z3D · ztext

∥z3D∥∥ztext∥
. (8)

Since the LanguageBind framework aligns text, image, and video
encoders in a common space, our system naturally supports re-
trieval from multiple query modalities: text, images, or videos.
For scalability, all z3D embeddings are stored in a vector database,
specifically ChromaDB [2], which allows an efficient approximate
search for nearest neighbor using cosine distance, and hence can be
used to retrieve similar 3D model embeddings. This allows interac-
tive, low-latency retrieval across thousands of models, making the
system practical for VR content creation applications.

4 DATASET GENERATION

To train and evaluate our method, we construct a multimodal dataset
based on Objaverse [4], supplemented with ModelNet40 [35] for
additional baselines.

Objaverse We generate 6 canonical multiview renderings for
each 3D model and record 6-second video clips to capture motion
and animation dynamics. This results in a dataset of over 26,000
models. While prior work has released static renderings, our con-
tribution is the first large-scale release of rendered videos for 3D
models. We make all data and rendering scripts (for Blender [3])
publicly available to facilitate reproducibility and future research.
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Figure 2: Multimodal 3D model representation learning for text-to-3D retrieval. Each 3D model is rendered from M canonical views. A
frozen, pretrained image encoder produces per-view embeddings, which a lightweight, trainable image-fusion model aggregates into a single
multiview image embedding. In parallel, a frozen video encoder computes a video embedding from a short dynamics clip. The final 3D model
representation is obtained by a non-trainable multimodal fusion step implemented as the mean of the multiview image and video embeddings.
The resulting 3D embedding is aligned in the same embedding space as the text encoder, enabling text-to-3D retrieval.

Captions We initially used the automatically generated Cap3D
captions [19] as a starting point. However, these captions often con-
tain errors as they are generated using large language models and
lack descriptions of dynamic behaviors. They also have high vari-
ability in terms of length and descriptiveness. As such, we do not
use them as our ground truth retrieval. Instead, we manually curate
a benchmark set of 500 models with detailed captions describing
both appearance and motion. This provides a small but valuable
benchmark for motion-aware 3D retrieval.

ModelNet40 For comparison, we also generate multiview im-
ages and videos for ModelNet40. Because these models are static,
the resulting videos reduce to extended renderings of fixed geom-
etry without meaningful motion. Although they lack dynamics,
this provides a useful baseline for evaluating retrieval performance
when only appearance cues are available.

Overall, our dataset contributions are: (i) the first large-scale re-
lease of rendered videos for Objaverse models, (ii) a curated bench-
mark of 500 motion-aware captions, and (iii) reproducible Blender
pipelines for extending the dataset.

5 EVALUATION

5.1 Text-to-3D Retrieval Accuracy
To evaluate how well our 3D representation captures both visual
and motion semantics, we measure text-based retrieval accuracy
on two benchmarks. On the Objaverse dataset, which consists of
publicly available models from Sketchfab [30], we use our man-
ually curated set of 500 detailed captions that describe both ap-
pearance and dynamics. On ModelNet40, we use the standard
category-level captions, which are more representative of prior
baseline setups. We compare against three representative base-
lines: ULIP[38], OpenShape [17], and CLIP-Goes-3D [10]. We

also compare against metadata-based search, GPT-4o–generated
descriptions, and single modality image-only and video-only based
retrieval. In addition, we ablate different multiview image fusion
strategies, including simple averaging, max pooling (closest image
match), and trainable fusion modules (MLP and attention), as de-
scribed in Section 3. We also experiment with a trainable multi-
modal fusion model, following the same training strategy as the
multiview image fusion, and compare it to a simple mean of the
multiview image and video embeddings (our solution).

We evaluate retrieval on a model library of 500 models and re-
port Top-1, Top-5, and Top-10 accuracy for both datasets. We also
compute the Mean Reciprocal Rank (MRR), defined as MRR =
1
N ∑

N
i=1

1
ranki

, where ranki is the position of the first correct re-
trieval for query i and N is the number of retrieval queries made,
which captures how highly the correct result is ranked on average
across all queries. Having an MRR of 1 indicates that the top-
1 retrieval is the expected model. For Objaverse, each caption is
instance-specific and corresponds to a single target model. In con-
trast, ModelNet40 uses category-level captions, so multiple models
may match a query, and success is defined as retrieving any model
of the correct category within the top-k results. The results can be
seen in Table 1.

Table 1 shows that our multimodal approach outperforms all
baselines on Objaverse, achieving 87.3% Top-5 accuracy and an
MRR of 0.806. Among baselines, GPT-4o–based text descriptions
are the strongest on Objaverse, while OpenShape achieves the best
results on ModelNet40, which primarily reflects category-level ap-
pearance cues. Our ablations highlight several trends. Multi-view
image features consistently improve over single-image retrieval,
and attention-based fusion yields the strongest image-only results.
Video-only retrieval demonstrates the value of motion, and com-
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Table 1: Zero-shot text to 3D retrieval on Objaverse and ModelNet40. Top-k results are reported as percentages. MRR is shown as mean.

Method
Objaverse ModelNet40

Top1 Top5 Top10 MRR Top1 Top5 Top10 MRR

Baselines

ULIP 40.5 59.0 66.0 0.483 37.5 55.0 60.0 0.453
OpenShape 36.8 63.8 72.3 0.481 80.0 95.0 95.0 0.868
Clip-Goes-3D 1.8 9.5 14.3 0.052 12.5 25.0 30.0 0.174
Metadata 25.8 41.5 47.8 0.321 — — — —
Text Description (GPT-4o) 55.0 74.5 78.8 0.634 60.0 85.0 87.5 0.694

Ours (ablations)

Single Image 40.0 58.8 63.3 0.481 22.5 35.0 40.0 0.283
Average Across All View Images 65.3 76.8 79.8 0.704 60.0 80.0 82.5 0.700
Maximum Similarity Across All View Images 35.3 60.5 70.5 0.461 65.0 82.5 85.0 0.740
Video Only 62.5 77.8 80.8 0.692 55.0 65.0 70.0 0.585
Multiview Image Fusion using MLP 68.5 82.3 84.8 0.743 70.0 77.5 82.5 0.745
Multiview Image Fusion using Attention 70.5 83.3 85.8 0.760 70.0 80.0 85.0 0.740
Ours: Multimodal Retrieval (Trained Fusion Model) 60.5 83.0 85.7 0.699 — — — —
Ours: Multimodal Retrieval (Mean of Multiview Image + Video) 75.5 87.3 89.5 0.806 70.0 85.0 85.0 0.721

bining images with videos further boosts performance. Notably,
simple averaging of image and video embeddings surpasses more
complex trained fusion, suggesting that pretrained encoders are al-
ready well aligned across modalities. Together, these results con-
firm that motion-aware multimodal embeddings provide the most
robust retrieval performance.

On ModelNet40, our approach achieves competitive perfor-
mance, though OpenShape remains the strongest baseline. This gap
is expected, as ModelNet40’s 3D models are static meshes without
textures or motion, limiting the benefit of our multimodal design. In
this setting, the video modality effectively is another rendering of
static geometry, providing little additional signal beyond the multi-
view images. Consequently, our multimodal fusion results are very
close to those of the image-only models, consistent with the absence
of dynamic cues in the dataset.

5.2 Retrieval Robustness to Model Library Size
While our model performs well on smaller libraries (e.g., 500 mod-
els), practical model libraries can be much larger. We therefore
study how retrieval accuracy scales with library size. To quan-
tify robustness, we measure the proportion of retrieval accuracy
retained as the library grows, where higher values indicate greater
resilience to scaling. Specifically, let Top-5@N denote the proba-
bility that the groundtruth model appears among the top five results
retrieved from an N-item library. We report the retained accuracy
as

retained(N) =
Top-5@N

Top-5@500
×100,

where 100% indicates no degradation relative to the 500-model set-
ting. We evaluate the retained retrieval accuracy at library sizes of
500, 1k, 10k, and 26k models.

From Figure 3, we observe that retrieval performance decreases
for all models as the library size grows, but the rate of degrada-
tion differs significantly. Baseline methods such as OpenShape and
ULIP drop sharply, while CLIP-Goes-3D struggles even at moder-
ate scales. In contrast, our model retains 57% of its top-5 accuracy
even at 26k candidates, demonstrating substantially greater robust-
ness to scaling. This indicates that our multimodal embeddings cap-
ture more discriminative and transferable features, enabling reliable
retrieval performance even in large-scale model libraries.

500 1k 10k 26k
Model Library Size (number of 3D models retrieved from)
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Figure 3: Top-5 retrieval accuracy retained as the model library
scales. Each line shows the top-5 accuracy retained for our model
and baselines as model library scales from 500 to 1k, 10k and 26k.

5.3 Qualitative Retrieval Accuracy User Study

To complement our quantitative evaluation, we conduct a user study
comparing our retrieval system with Sketchfab. We recruit 14 par-
ticipants, eight with prior experience searching for 3D models and
six with no previous exposure to 3D modeling.

Each participant is initially asked to use the same four fixed
prompts (two text, one image, one video) when searching for 3D
models on both the retrieval systems (ours and sketchfab). The par-
ticipant is then asked to come with 4 more prompts on their own.
For each prompt on each system, they inspect the top-5 retrievals
and answer three main questions on a 5-point Likert scale (higher
is better): (1) overall relevance to the prompt, (2) relevance of vi-
sual appearance, and (3) relevance of motion and animation. The
motion score is ignored in our data analysis when the prompt does
not specify any kind of animation.

The average scores for all prompts are shown in Fig. 4. Our
retrieval system outperforms Sketchfab on every criterion: overall
relevance (3.88 vs. 3.07), visual match (3.46 vs. 2.87), and mo-
tion/animation match (3.65 vs. 2.05). The largest improvement is
in motion scores, indicating better alignment with dynamic seman-
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Figure 4: User study (n=14) comparing our retrieval system and
Sketchfab. Bars show mean Likert ratings (1–5; higher is better) for
Overall, Visual, and Motion relevance of the top-5 retrieved models
across all prompts and error bars denote SEM. Our retrieval system
scores higher than Sketchfab on all three metrics, with the largest
margin on Motion.

tics, though we also observe general improvement in retrieval qual-
ity, particularly for detailed prompts. When asked to select their
preferred platform for each prompt, participants chose our retrieval
system 83.9% of the time for the four fixed prompts that we pro-
vided. However, for the prompts the participants created them-
selves, our system was preferred only 57.1% of the time. We at-
tribute this discrepancy primarily to the limited scope of our model
library (26k Objaverse models) compared to Sketchfab’s substan-
tially larger, open-ended database. Consequently, specific models
that users searched for (e.g., ”library with a worm resting on one
of the books” or ”a hacker typing at a keyboard”) were often un-
available in our collection, while Sketchfab’s broader catalog in-
creased the likelihood of finding relevant matches. Additionally,
since Sketchfab does not natively support image- or video-based
queries, participants had to reformulate such prompts as text de-
scriptions. Given these limitations, we report descriptive statistics
without claims of statistical significance.

5.4 Performance Overhead
On a Linux desktop with an RTX 4090, the per-model time to add
a new 3D model (capture → embedding) is ≈ 31.4s in total: im-
age capture (6 views) 1.84s, video capture (6 s clip) 19.30s, image
embedding (6 images) 8.38s (median), and video embedding 1.90s
(median). Multimodal fusion (multiview fusion over six images,
averaged with video) and adding to the database takes 1.8ms per
model, which is quite small compared to the previous steps.

For retrieval on a 26k-item database, the database lookup itself is
fast: top-10 retrieval latency is 1.5ms (p50) and 52ms (p95). End-
to-end retrieval (text embedding + retrieval) is 2.20s (p50) and
2.25s (p95), dominated by getting the text embedding at ≈ 2.19s.

The most memory-consuming phase is image capture (GPU
∼ 8.38GB VRAM; CPU ∼ 7.52GB), followed by video capture
(GPU ∼ 7.52GB; CPU ∼ 8.59GB). The embedding generation
steps use less GPU memory (∼ 3.54–4.08GB) but show higher
CPU peaks (∼ 9.13GB).

Although processing and indexing new models require the bulk
of computation and time, these steps occur only once at inges-
tion. Once a model has been captured, embedded, and added to
the database, subsequent searches incur negligible overhead. This
design makes the system practical and scalable as the one-time in-
gestion cost is amortized over all future queries, while retrieval re-
mains lightweight and responsive even at large corpus sizes. this
All figures are rough estimates intended to convey operational cost.

The absolute values vary with software and hardware infrastructure,
scene geometry and textures, and corpus scale.

6 DISCUSSION

Our results highlight the promise and current limitations of mul-
timodal 3D retrieval. By jointly leveraging multiview images and
rendered motion clips, our approach outperforms existing baselines
on Objaverse, especially for prompts that reference dynamic be-
haviors. The ability to align text with visual appearance and motion
cues makes retrieval more expressive and closer to how creators nat-
urally think about models when building immersive environments.

At the same time, our experiments reveal caveats. On Model-
Net40, with static, textureless geometry, the benefits of multimodal-
ity are diminished, as the video stream provides little additional sig-
nal beyond the rendered views. While our results are competitive,
this suggests that motion-aware retrieval is most valuable for mod-
els designed to be animated, rather than purely geometric datasets.
Similarly, while our system demonstrates robustness as the retrieval
library scales, accuracy inevitably declines with very large collec-
tions, pointing to an open challenge for scalable 3D search.

Another notable finding is that simple averaging of image and
video embeddings often outperforms more complex trainable fu-
sion schemes. This suggests that pretrained encoders are already
well aligned across modalities and lightweight integration can suf-
fice. However, this may also reflect the limited scale of current
training data. With larger and more diverse multimodal datasets,
learned fusion strategies could potentially yield greater gains.

Although our current framework uses six canonical views and a
single rendered video per model, there is substantial room to ex-
plore richer input modalities. Extending to multiview video could
provide more comprehensive coverage of both geometry and mo-
tion, particularly for models with complex dynamics. Beyond sim-
ply adding more views, an important open question is how to iden-
tify which views or motion segments are the most informative. This
could improve robustness and efficiency by focusing attention on
the features most critical for semantic understanding of 3D models.

More broadly, advancing multimodal embeddings of 3D models
has implications that extend beyond retrieval. A richer semantic
understanding of individual 3D models also lays the foundation for
reasoning at the scene level. Since scenes are ultimately composed
of multiple interacting models, the ability to capture fine-grained
appearance and motion at the model level can extend to seman-
tic scene understanding. This opens the possibility of retrieving
not just single models but entire scenes based on high-level de-
scriptions, as well as supporting context-aware composition where
models are selected to fit naturally within larger environments. In
addition, such embeddings may benefit 3D model generation, serv-
ing as a prior that constrains generative models toward more se-
mantically coherent outputs. By bridging retrieval and generation,
motion-aware multimodal representations could ultimately enable
workflows where users specify high-level descriptions and systems
populate scenes with appropriate, contextually consistent models.

7 CONCLUSION

This paper presents a method for representing 3D models that cap-
tures both visual appearance and motion. Because reliable 3D cap-
tions are scarce, we leverage pretrained image– and video–text en-
coders and train a multimodal fusion model. Compared to base-
lines, our approach achieves higher retrieval accuracy, scales more
robustly, and is preferred by users over Sketchfab for semantic
search, indicating practical value. Simple yet effective, it is suitable
for large-scale retrieval and will continue to improve as encoders
advance, without additional 3D data. This work takes a step toward
making natural language a more effective interface for exploring
and retrieving 3D content.
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