ABSTRACT 1

Demo Abstract:
GenAssist: Interactive Prompt-Driven XR Program Generation

Edward Lu’
Carnegie Mellon University

Sruti Srinidhi”

Carnegie Mellon University

Akul Singh”

Carnegie Mellon University

Anthony Rowe*
Carnegie Mellon University
Bosch Research

Create a keypad to enter my name
Band a popup saying “Hi <name>"
when | click the Enter button

B Related APl Documentation
_l Retrieval (for RAG)

Create a Christmas tree Make a Disney castle out of Create a snowman with a hat on

with a star on top made of s its head, buttons for eyes and a
L primitives

primitives

carrot for a nose

Text prompt

Program

Generation LLM @

i N

Visual and Text F

S —
@ Program

Correction LLM

Construct a volcano with
B smoking rising from it that shoots

Create a car on a road that a
B user can control with arrow key
lava and ash when clicked on

buttons

(a) Example Programs Generated using GenAssist (b) High Level System Diagram and Workflow for GenAssist

Figure 1: GenAssist overview and examples. (a) Example XR programs generated from natural-language prompts: procedural
modeling with a set of base objects (“Christmas tree with a star”; “castle”), compositional object creation (“snowman with a hat,
button eyes, and a carrot nose”), GUI and event handling (“keypad to enter a name and a pop-up saying ‘Hi <name>’ on Enter”),
continuous control (“car that the user drives with arrow keys”), and event-triggered effects (“volcano that smokes and erupts on
click”). Images are static renderings; many examples involve interactions (e.g., clicking, and animations) that are present in the
generated programs but not visible in the stills. (b) System workflow: a user writes a text prompt; a Program-Generation LLM (aided
by retrieval-augmented API documentation) synthesizes code and generate an XR program; the system then captures visual and
textual snapshots; a Program-Correction LLM inspects these artifacts and edits the code; the loop repeats until the requested
scene and behavior are achieved, yielding the final XR program.

INTRODUCTION

This work demonstrates GenAssist, a system for generating in-
teractive Extended Reality (XR) programs from natural lan-
guage prompts. Given plain-text descriptions, our system utilizes
Retrieval-Augmented Generation (RAG) to fetch relevant docu-
mentation and example code, enabling Large Language Models
(LLMs) to synthesize and execute XR programs in real time. To en-
sure outputs align with user specifications, GenAssist incorporates
a closed-loop feedback mechanism that uses virtual cameras to in-
spect the scene and iteratively refine the code, mimicking the man-
ual development cycle of compiling and testing. Beyond static ob-
ject placement, the system generates functional scripts that animate
objects and enable complex user interactions. Our demo showcases
the live generation of interactive XR content, allowing users to use
voice or text prompts to iteratively build, view, and interact with 3D
programs through a headset.

Index Terms: Virtual Reality, Large Language Models, Program
Generation

*e-mail: {ssrinidh, akuls, elu2, agr} @andrew.cmu.edu

With the rapid advancement of Extended Reality (XR) technolo-
gies, 3D applications are moving beyond niche domains toward
broader everyday use, including immersive entertainment and in-
teractive tools that blend digital and physical environments. De-
spite this growing adoption, XR development remains complex and
time-consuming, often requiring expertise in programming, design,
and multiple specialized tools. This high barrier limits accessibility
for non-experts and makes rapid prototyping challenging.

At the same time, Al-powered chatbots and assistants have ma-
tured into promising tools for simplifying content creation. How-
ever, text-only interfaces are insufficient for XR authoring, which
depends heavily on visual feedback and iterative refinement. Ef-
fective XR generation requires systems that can both produce exe-
cutable programs and provide real-time, visual insight into the re-
sulting 3D scene so developers can evaluate and adjust their output.

We present GenAssist, a system that enables users to create in-
teractive XR programs in real time using natural language prompts.
GenAssist leverages Large Language Models (LLMs) to generate
XR code that runs on the ARENA platform [3], which provides
a WebXR front-end for executing Python-based XR applications



in browsers or immersive headsets. To improve accuracy and ro-
bustness, GenAssist combines a self-correction feedback mecha-
nism based on visual and program-state evaluation with Retrieval-
Augmented Generation (RAG) that grounds code generation in
platform-specific documentation and examples. Together, these
techniques enable rapid, accessible XR prototyping for non-experts.

We demonstrate GenAssist through an interactive XR authoring
demo that allows users to create and modify 3D programs using nat-
ural language in real time. In this demo, users iteratively describe
desired objects, animations, and interactions through natural lan-
guage prompts, and immediately observe the resulting changes in
the XR environment. By combining natural language input, visual
feedback, and automatic self-correction, GenAssist enables rapid
prototyping of interactive XR programs without requiring prior ex-
pertise in XR development. This demonstration highlights GenAs-
sist’s ability to lower the barrier to XR content creation while sup-
porting intuitive, iterative program design. !

2 SYSTEM OVERVIEW

GenAssist is a system that enables real-time XR program cre-
ation from natural language by combining LLM-based code gener-
ation, iterative visual feedback, and retrieval-augmented generation
(RAG). Our implementation targets the ARENA WebXR platform,
but the overall design can be generalized to other XR runtimes that
support programmable scene manipulation and scene state access
and has been successfully tested with a Unity backend.

2.1 XR Code Generation for ARENA

GenAssist generates Python programs using ARENA’s scripting
API, arena-py [4], which allows dynamic creation and manip-
ulation of XR scenes through a distributed pub-sub architecture.
Python is well suited for LLM-based code generation due to its
widespread adoption and strong representation in the training data
of modern models such as GPT-40. ARENA’s hot-pluggable ex-
ecution model enables generated programs to be injected and up-
dated in real time without interrupting connected viewers, support-
ing rapid iteration during interactive use.

2.2 lterative Scene Correction via Visual Feedback

To improve reliability, GenAssist employs an iterative correction
loop that uses visual and spatial feedback from the generated XR
scene. After the generated code is executed, the system captures 2D
screenshots rendered in a browser using Microsoft Playwright and
extracts spatial metadata such as object positions and 3D bounding
boxes. This information, together with execution logs, the current
program state, and prompt history, is fed back to the LLM to de-
tect errors, resolve spatial inconsistencies, and refine the program
to better match the user’s input prompts.

2.3 Retrieval-Augmented XR Program Generation

GenAssist uses retrieval-augmented generation to ground code syn-
thesis in platform-specific knowledge and reduce hallucinations.
ARENA documentation and example code are embedded in a vec-
tor database and retrieved based on semantic similarity to the user’s
prompt, then injected into the LLM context to leverage in-context
learning [1]. A similar approach is used to retrieve relevant 3D as-
sets from ARENA’s model repository. We GPT-40 for code genera-
tion and Chroma-db for retrieval, enabling accurate, context-aware
XR program generation suitable for live demonstration.

3 EVALUATION

We evaluated GenAssist across three dimensions: user experience,
generation accuracy and system overhead.

Detailed system overview, evaluation, results and visuals can be found
at https://www.srutisrinidhi.com/GenAssist/

User Experience: A user study with 18 participants showed an
overall low NASA Task Load Index (TLX) of 36.6/100, indicating
relatively low cognitive load , and a System Usability Score (SUS)
of 69.6, suggesting good usability for non-experts.

Generation Accuracy: We curated a taxonomy of 50 prompts
across five categories: (1) Object Placement, (2) Animations, (3) In-
teractivity, (4) Complex Programs, and (5) Iterative Generation. We
recruited 15 raters to evaluate programs on a 10-point scale across
four metrics: Prompt Match, Object Placement, Functionality, and
Overall Quality. Using a linear mixed-effects model to control for
rater bias and prompt difficulty, GenAssist achieved a predicted rat-
ing of 7.304, outperforming GPT-40 alone (5.377) and the prior
state-of-the-art LLMR (3.479) [2]. We also verified functional va-
lidity through objective boolean checks (e.g., code execution and
object existence), where GenAssist consistently satisfied more cri-
teria than ablated variants.

System Overhead: The system is efficient for live genera-
tion, with an average initial generation time under 10 seconds, and
each subsequent correction cycle being approximately 14 seconds,
which is 3.7x faster than prior state-of-the-art systems.

4 DEMONSTRATION

We demonstrate GenAssist through a live XR authoring experience
in which users create and modify XR programs using natural lan-
guage while wearing a VR headset.

Users wear a Meta Quest 3 headset and enter an ARENA scene
where they can interact with and view the XR content they author.
They are given a small microphone they can clip on which they
can speak into to provide natural language prompts to create the
XR program, like “’create a red car out of primitives” or “make a
house whose door opens when I get close to it”. GenAssist then
generates and executes the corresponding XR program in real time.
The resulting program is rendered immediately on the headset, al-
lowing users to explore the generated content from an immersive
first-person perspective. For audience engagement, the XR view is
also mirrored on an external monitor so that observers can see the
generated scene and interactions without wearing a headset.

During the demonstration, the system specifically highlights its
recovery from common failure modes, such as spatial inconsisten-
cies or incorrect event-handler logic. If a prompt results in a bug
(e.g., an interaction that fails to trigger), the iterative feedback loop
utilizes execution logs and visual snapshots to detect the discrep-
ancy. The correction loop then re-synthesizes the faulty code block
to align with the user’s intent. This self-correction process allows
users to iteratively refine their programs through additional spoken
prompts without manually editing code, supporting intuitive proto-
typing while maintaining robustness through continuous correction.

REFERENCES

[1] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhari-
wal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M.
Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,
I. Sutskever, and D. Amodei. Language models are few-shot learners,
2020. 2

[2] F. De La Torre, C. M. Fang, H. Huang, A. Banburski-Fahey,
J. Amores Fernandez, and J. Lanier. Llmr: Real-time prompting of
interactive worlds using large language models. In Proceedings of the
2024 CHI Conference on Human Factors in Computing Systems, pp.
1-22,2024. 2

[3] N. Pereira, A. Rowe, M. W. Farb, 1. Liang, E. Lu, and E. Riebling.
Arena: The augmented reality edge networking architecture. In 2021
IEEE International Symposium on Mixed and Augmented Reality (IS-
MAR), pp. 479-488, 2021. doi: 10.1109/ISMARS52148.2021.00065 1

[4] A. XR. arena-py: Python library for accessing the arena. https:
//github.com/arenaxr/arena-py. 2


https://github.com/arenaxr/arena-py
https://github.com/arenaxr/arena-py

	Introduction
	System Overview
	XR Code Generation for ARENA
	Iterative Scene Correction via Visual Feedback
	Retrieval-Augmented XR Program Generation

	Evaluation
	Demonstration

