
© 2025 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE
Visualization conference. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

GenAssist:
Interactive Prompt-Driven XR Program Generation

Create a Christmas tree
with a star on top made of
primitives

Make a Disney castle out of
primitives

Create a snowman with a hat on
its head, buttons for eyes and a
carrot for a nose

Construct a volcano with
smoking rising from it that shoots
lava and ash when clicked on

Create a keypad to enter my name
and a popup saying “Hi <name>”
when I click the Enter button

Create a car on a road that a
user can control with arrow key
buttons

Text prompt

Program
Generation LLM

Program
Correction LLM Generated XR Program

Visual and Text Feedback

(a) Example Programs Generated using GenAssist (b) High Level System Diagram and Workflow for GenAssist

Related API Documentation
Retrieval (for RAG)

Figure 1: GenAssist overview and examples. (a) Example XR programs generated from natural-language prompts: procedural
modeling with a set of base objects (“Christmas tree with a star”; “fantasy castle”), compositional object creation (“snowman with
a hat, button eyes, and a carrot nose”), GUI and event handling (“keypad to enter a name and a pop-up saying ‘Hi <name>’ on
Enter”), continuous control (“car that the user drives with arrow keys”), and event-triggered effects (“volcano that smokes and erupts
on click”). Images are static renderings; many examples involve interactions (e.g., clicking, and animations) that are present in the
generated programs but not visible in the stills. (b) System workflow: a user writes a text prompt; a Program-Generation LLM (aided
by retrieval-augmented API documentation) synthesizes code and generate an XR program; the system then captures visual and
textual snapshots; a Program-Correction LLM inspects these artifacts and edits the code; the loop repeats until the requested
scene and behavior are achieved, yielding the final XR program.

ABSTRACT

This paper introduces GenAssist, a system for generating inter-
active Extended Reality (XR) programs from natural language
prompts. Given plain text descriptions of desired programs, our
system uses Retrieval-Augmented Generation (RAG) to retrieve re-
lated documentation and example code, which are then used to
prompt Large Language Models (LLMs) to generate and execute
hot-pluggable XR programs in real time. To ensure that the pro-
grams are written correctly to the user’s specifications, we add a
closed-loop feedback mechanism using virtual cameras in the scene
that iteratively refines the system’s output, mimicking the devel-
opment cycle of human developers that compile and then interac-
tively test programs. GenAssist generates scripts that can not only
place multiple primitives and 3D models in plausible locations in a
virtual scene, but it can also animate and enable user interactions
with those objects. We show that across a benchmark of 50 diverse
XR program prompts, our system achieves high output accuracy
and program generation quality. Furthermore, we conduct a user

study with 10 participants that demonstrates GenAssist’s effective-
ness and usability (NASA TLX = 39) for XR program generation.
We compare GenAssist to prior systems and show that it is signifi-
cantly faster (<10 seconds per run) and makes fewer LLM calls.

Index Terms: Virtual Reality, Extended Reality, Large Language
Models, Program Generation

1 INTRODUCTION

With the rapid advancement of Extended Reality (XR) technolo-
gies, 3D applications will one day move beyond niche use cases
and become part of everyday experiences. Once limited to spe-
cialized fields, 3D content will soon be found in a wider range of
applications, from immersive entertainment to interactive tools that
blend digital content with the physical world. Despite this growing
adoption, the development of XR programs remains complex. It
often requires a steep learning curve and a combination of skills in
design, programming, art, and many software tools. Even creating
simple 3D interactions can be time-consuming, while advanced ap-
plications require significant effort and expertise. This high base-
line effort creates a barrier for non-experts, limiting opportunities
for rapid prototyping, experimentation, and broader participation in
XR content creation.

1

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/

© 2025 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

Similarly, AI-powered chatbots and assistants are rapidly ad-
vancing to the point where they can be used as a unique tool to
simplify XR authoring. While this vision is promising, text-only
chatbots are not yet sufficient for highly visual workflows like XR
development, which rely on iterative, real-time visual feedback.
Ideally, we need mechanisms that can both generate XR programs
and give developers visual feedback into the scene so that they can
iteratively evaluate their output.

This paper presents GenAssist, a system that enables users to
create interactive XR programs in real time using natural language
prompts. GenAssist leverages Large Language Models (LLMs) to
generate code that integrates with interactive XR scripting environ-
ments. In our implementation, we target programs that run on the
ARENA platform [31], which exposes a WebXR front-end to dy-
namically load and execute Python programs. Users can interact
with these programs in standard browsers (in 3D) or in immersive
mode on headsets. GenAssist creates programs that allow users to
place 3D objects, import existing models, create animations, and
define interactive behaviors, all by simply describing their goals in
natural language. For example, a user can simply enter “create
a tree” instead of manually searching for a model or assembling
one from primitive objects, or “make the cube rotate when clicked”
rather than writing event-driven code from scratch. Our system also
supports iterative program development, allowing users to modify
and expand XR programs as their goals evolve.

GenAssist is designed to democratize XR content creation by
enabling non-experts to generate small, interactive 3D programs
purely using natural language. Rather than replacing professional
XR development tools, our system targets rapid prototyping, educa-
tional content creation, and experimentation scenarios where ease
of use and quick iteration are more important than scene complexity
or performance.

To ensure the accuracy and reliability of generated XR code us-
ing GenAssist, we incorporate two key techniques:

First, GenAssist employs a self-correction feedback mecha-
nism that helps to ensure that the generated XR program matches
the intent of the user. The system continuously evaluates the gen-
erated program using visual feedback, spatial information, and the
state of the program to identify discrepancies between what the user
requested and what was produced. When misalignments or inaccu-
racies are detected, GenAssist automatically refines previously gen-
erated code to bring the output closer to the intended result. This
feedback loop supports more accurate and robust content genera-
tion over time.

Second, it pulls semantically relevant information from
platform-specific documentation and relevant code examples us-
ing Retrieval-Augmented Generation (RAG) to ground LLM out-
puts. This not only ensures that generated programs are relevant to
the user’s query but also prevents syntactical and potential runtime
errors by providing the LLM with context tailored to the target run-
time environment and task. This improves the accuracy of the gen-
erated code especially in generating ARENA-specific code, which
is a rapidly evolving and improving platform.

To evaluate GenAssist, we assess its accuracy and performance
in generating a diverse set of XR programs. Specifically, we pro-
pose a benchmark of 50 programs of varying complexity, covering
object placement, animations, and user interactions, which we use
to test the XR output of GenAssist. We compare GenAssist against
several baselines, including ablated variants without the feedback
loop or retrieval module, as well as previous work on prompt-based
XR program generation. Since evaluating an XR program is highly
subjective and there could be multiple correct programs, we have
human evaluators rate the accuracy and quality of outputs. GenAs-
sist achieves the highest average rating in all metrics, outperforming
standard GPT-4o and other baselines, highlighting the value of our
feedback and retrieval mechanisms.

We validate our system through a structured user study with 10
participants, measuring the user experience during XR program cre-
ation with our system. The system received a NASA TLX score of
39.0/100 indicating low perceived workload and a system usability
score (SUS) of 69 indicating good usability.

Finally, GenAssist shows strong efficiency, with an average gen-
eration time of 9.93 seconds per query and 14.17 seconds per cor-
rection. It also requires significantly fewer LLM calls per scene
compared to prior systems while producing more accurate results.

In summary, our paper contributes the following:
1. GenAssist: an open-source system for generating XR pro-

grams from natural language prompts, enabling rapid 3D
scene creation and interaction design.1

2. A visual feedback loop for LLM generated code refinement to
improve the quality of XR programs generated.

3. A user study and system-level analysis that provides informa-
tion on GenAssist’s usability, generation accuracy, and run-
time performance compared to existing approaches.

4. A comprehensive evaluation of our system’s program gener-
ation quality compared to state-of-the-art baselines across 50
diverse prompts, with all prompts and outputs released as a
public benchmark dataset.

2 RELATED WORK

2.1 XR Prototyping and Generation
To create 3D scenes and interactive programs, designers have tra-
ditionally relied on commercial game engines such as Unity [38]
and Unreal Engine [11], which include plugins like MRTK [27]
which provides primitives for 3D user interfaces. These platforms
often have a high barrier to entry, as developing advanced appli-
cations requires skilled developers or experienced game designers.
This makes rapid prototyping of 3D scenes or interactive content
difficult and time-consuming for non-experts who may only need
a small application for a quick 3D visualization. As a result, there
is growing interest in democratizing the process of 3D content cre-
ation, allowing users to build interactive environments without re-
quiring extensive technical expertise.

Early approaches to the generation of 3D and XR content fo-
cused on scene adaptation using predefined rules, semantic rea-
soning, and domain-specific heuristics. These systems typically
modified existing scenes based on spatial or contextual cues rather
than generating content from scratch [26, 25, 47]. For example,
Cheng et al.’s SemanticAdapt [8] adjusts object layouts based on
semantic relationships, while Chang et al.’s SceneSeer [7] allows
natural language prompting to search through existing scenes and
models and place them in the scene. Other systems like Xu et
al.’s Sketch2Scene [43] allow users to sketch 3D scenes, relying
on model training and visual templates to construct environments.
Adobe’s Aero [2] enables interaction with AR elements through a
GUI, reducing the need for programming. Although these systems
provide more intuitive authoring tools than scripting in a game en-
gine, they typically only support static scenes and have limited abil-
ity to generalize across domains. In addition, they lack support for
open-ended user interactions with the scene objects.

With the rapid growth of large language models and generative
AI, emerging systems have begun to support text-driven 3D scene
creation, providing a more natural interaction modality compared
to scripting or graphical user interfaces. Diffusion-based meth-
ods [33, 24, 20, 15] generate 3D assets from natural language,
focusing primarily on mesh generation. Though powerful for ob-
ject synthesis, these approaches are typically limited to rigid, static
models and do not extend to interactive or programmable XR con-
tent. Similarly, Google has been releasing a series of world building
models such as Genie [12] that can create high-fidelity 3D worlds

1The code will be open-sourced at camera ready.

2

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/

© 2025 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

Text prompt

3D Models

Database with Code API
Documentation and
Program Examples

Retrieve Related
Documents

Prompt History

Generated Code

LLM

LLM

Generated Program

Image of SceneCurrent Program Code
3D Coordinates of

Objects in the
Scene

XR Program Generation

XR Program Correction

Figure 2: GenAssist system architecture. GenAssist comprises of two main stages: program generation and program correction. In the
generation stage, a user-provided text prompt is used to retrieve relevant ARENA platform documentation, API usage examples, and 3D models
using RAG techniques. These are passed to a large language model (LLM) to generate code, which is then executed in ARENA’s Python runtime
to produce the XR program. In the correction stage, the system gathers the current program code, 3D object coordinates, and images of the
scene from strategically-placed virtual cameras, along with the user’s prompt history. This context is used by the LLM to make code corrections
if needed.

and have basic agent interaction, but are still mostly static and only
support limited interactions.

Scene generation and editing systems using LLMs have also
been rapidly advancing. For instance, Qian et al. introduced
SHAPE-IT [34], which leverages LLMs to translate user prompts
into code that generates shapes on pin-based shape displays.
Closely related to GenAssist are systems such as 3D-GPT [37] and
BlenderAlchemy [17], both of which generate Blender-compatible
Python code to synthesize and edit existing geometry and materi-
als. 3D-GPT emphasizes reasoning and task decomposition from
textual instructions, whereas BlenderAlchemy integrates visual pro-
cessing capabilities, enabling the LLM to interpret both text and
image inputs for a more interactive and multimodal approach to
3D content generation. Building on these efforts, SceneCraft [16]
introduces a self-correction mechanism that iteratively refines gen-
erated scenes to address errors. GenAssist builds upon the ideas
presented in these works to create interactable scenes using exist-
ing 3D models and object primitives. Specifically, we make use of
a scripting API and runtime that provides straightforward and ac-
cessible methods for scene manipulation that an LLM can leverage.

Although LLMs have been applied to XR content generation,
many existing approaches are tailored to highly specific use cases
rather than general-purpose scene creation. Applications such as
VR Copilot [48] and Holodeck [44] leverage LLMs to specifically
generate room layouts in Unity. Other applications explore this in
the context of video games by dynamically generating in-game ob-
jects using text or player inputs [19, 35]. These systems show the
potential of LLMs for 3D scene modification, but lack the adapt-
ability needed for general-purpose, open-ended XR creation.

In the domain of interactive XR program generation, multi-
ple systems have leveraged LLMs to create interactable content.
Giunchi et al. with DreamCodeVR [13] present a simpler approach

to generating objects, performing a LLM call to generate code for
object creation. However, it lacks an iterative refinement process
and exhibits limited complexity in object outputs. De La Torre
et al.’s LLMR [10], a recent system for XR program generation,
employs a pipeline of multiple LLM calls to plan, analyze, build,
and refine scene generation outputs, which we discuss in Section
4.2 as a recent example of multistage XR program synthesis using
LLMs. Conceptually, our approach aligns with broader efforts like
PAIL [46], which reframe LLM-based programming as a design
activity involving iterative exploration and decision tracking.

2.2 RAG for Code Generation

RAG enhances the capabilities of LLMs by supplementing their
internal knowledge with relevant external context. Initially de-
veloped to improve accuracy and reduce hallucinations in natural
language tasks [22], RAG retrieves relevant documents or code
snippets from a corpus and incorporates them into the generation
process. This is especially useful in domains where training data
alone may be insufficient, enabling dynamic access to up-to-date
or domain-specific information. While RAG is widely used in nat-
ural language processing, it has also been adapted for multimodal
tasks, such as image generation with retrieval-augmented diffusion
models [3] and 3D content generation [36].

In code generation, RAG has shown promise but also presents
challenges. Wang et al. introduce CodeRAG-Bench [40], a bench-
mark evaluating RAG-based code generation, noting that while
retrieved context can improve results, models often struggle to
integrate semantically relevant but lexically mismatched content.
Large-scale systems such as CodeRetriever [23] demonstrate the
effectiveness of unimodal and multimodal retrieval strategies for
code synthesis and search. Systems such as REDCODER [30] re-
trieve and incorporate various code–text pairs, and others have ex-

3

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/

© 2025 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

Program Generation Prompt=

 You are a 3D XR program generation assistant. Based on the following
context, generate code to create the specified program:

 1. Relevant Documentation and Examples:

 {retrieved_docs_and_examples}

 2. Available 3D Models:

 {model_urls}

 3. Current Scripts that are Running:

 {current_running_scripts}

 4. History of prompts (first one is the most recent):

 {prompt_history}

 Generate the code considering the above context for the question that
follows: {question}

Program Correction Prompt=

 Based on the following context, decide whether to modify the program or
not. If you decide to modify it, provide the python script of the corrected
program:

 {image_of_scene.png}

 Current Script Running in the scene:

 {current_running_scripts}

 Scene Object Bounding Boxes [format = objectid: min: minimum xyz
coordinate, max: maximum xyz coordinate] (if the bounding box is inf that
means the model is bad and should be replaced):

 {bounding_boxes}

 History of Prompts(first prompt is the most recent):

 {prompt_history}

 Use the image and the information to correct the program.

(a) Program Generation Prompt

(b) Program Correction Prompt

Figure 3: Template prompts used to provide additional context for
program generation and program correction.

plored the retrieval for specialized domains, including the genera-
tion of RTL codes for hardware design [21, 41], the enhancement of
code security [29] and automated bug fixing [39]. However, studies
show that irrelevant retrieval can negatively impact performance,
highlighting the importance of high-quality retrieval strategies [45].

Building on these foundations, GenAssist applies RAG to XR
program synthesis, a novel extension of retrieval-augmented code
generation to 3D and interactive environments.

3 SYSTEM DESIGN

In the following subsections, we outline how GenAssist generates
XR programs from natural language for ARENA (a WebXR run-
time platform), how it employs a feedback loop to iteratively refine
its output, and how retrieval-augmented generation (RAG) tech-
niques are applied to enhance code generation. An overview of the
system architecture is shown in Fig. 2, with descriptions of each
component described below.

3.1 Code Generation for ARENA

ARENA provides a dedicated Python API, arena-py [42], and a
Python runtime. All program I/O passes through a scene graph
that is overlaid on a pub-sub backend. The choice of Python is
particularly advantageous: It is one of the most widely used pro-
gramming languages with a vast ecosystem of publicly available
code. Thus, most commercial large language models (LLMs) such
as GPT-4o [1] have been trained on large amounts of Python pro-
gramming data, making these models well suited to generate syn-
tactically correct and directly executable Python code.

Although ARENA is primarily web-based, its programs are in-
herently cross-platform and distributed, meaning they can run on

any device with a network connection and are not limited to a spe-
cific viewing environment. In fact, all our experiments were con-
ducted using a browser-based viewing app, though ARENA also
supports a Unity-based viewer. It is important to note that while
our implementation targets ARENA, the core methodology gener-
alizes to any XR platform. The visual feedback loop requires only
the ability to capture screenshots and extract object spatial informa-
tion, capabilities available in Unity, Unreal Engine, and other plat-
forms through their respective APIs. Similarly, our RAG approach
can incorporate documentation and examples from any platform’s
ecosystem. ARENA was selected primarily for its hot-pluggable
execution model, which facilitates rapid iteration during develop-
ment and evaluation, as well as structured and easy-to-access doc-
umentation.

GenAssist only synthesizes the arena-py code, the ARENA
runtime handles event dispatch, scene synchronization, and exe-
cution. As of this submission, the interactions exposed through
ARENA to arena-py, and hence the interactions that GenAssist
can use in the programs it generates, consists of (a) pointer/cursor
events (mouse or controller interactions), (b) proximity-based inter-
action, and (c) a limited set of keyboard events. This is a platform
boundary rather than a limitation of our method, and so on run-
times with richer inputs, GenAssist can target those events as long
as documentation and examples are available for retrieval.

3.2 Iterative Scene Correction Feedback Loop

Although LLMs have demonstrated strong capabilities in generat-
ing code across a wide range of domains, they are not error-free.
LLMs can still produce syntactically invalid code, incorrectly use
APIs, or introduce logical or physical inconsistencies, which af-
fects the quality of generated XR programs. To mitigate these is-
sues and improve reliability, GenAssist incorporates a visual and
textual feedback loop inspired by how developers typically refine
XR applications: writing code, observing the resulting scene, and
iteratively adjusting based on visual output as seen in Fig. 2 XR
program correction.

To replicate this workflow, GenAssist periodically captures 2D
screenshots of the scene, taken from strategic camera positions that
provide a comprehensive view of all objects in the environment. To
capture these images, we render the ARENA scene in a browser
window using Playwright [28], a browser automation framework,
and take screenshots of the generated program. To guarantee that
the entire scene is captured in the image, the system automatically
computes the 3D bounding boxes of all objects and determines an
appropriate camera position that ensures that all objects are within
view. This visual feedback allows the model to “see” what has been
generated, enabling it to detect issues that may not be obvious from
the code alone. This process can be executed on a separate machine,
ensuring that the user’s performance remains unaffected.

Additionally, GenAssist feeds the 3D bounding box coordinates
of all the objects to the program correction module. This helps the
LLM place objects in physically plausible locations by providing
an understanding of spatial relationships within the program,
which are not always evident from 2D screenshots, such as
relative object sizes and placements. This is especially important
when incorporating external objects and models in ARENA,
as the generated code only references a file server URL (e.g.,
https://arenaxr.org/fakeuser/mymodels/model.glb)
without specifying the underlying geometry. As a result, the
system cannot determine the model’s relative size or shape until it
has been rendered in the scene. This spatial information helps the
LLM understand a given 3D model’s positioning, scale, and po-
tential overlaps with other objects, providing essential context for
reasoning about spatial relationships within the 3D environment.
Alongside visual and spatial feedback, the loop also includes the
current generated code and a full history of previous prompts to

4

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/

© 2025 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

ensure that the model remains aware of both the intended goals and
the program’s evolution over time.

Lastly, to improve robustness, the system captures and feeds any
detected errors, including syntax issues, runtime exceptions, or ex-
ecution logs, into the correction loop. This loop iteratively refines
the scene by prompting the LLM to fix identified problems, correct
object placements, and adjust the program to better align with the
intended design. Through this continuous cycle of feedback and
correction, GenAssist ensures that the generated XR programs be-
come increasingly accurate and functional over time. The template
for the data provided as the context for the scene corrector is also
shown in Fig. 3. This is one of the key features that allows for
iterative development, where a person’s prompt can reference pre-
vious actions, the current scene, and program state, building up and
modifying a program using multiple sequential prompts.

3.3 XR Program Generation with Retrieval-Augmented
Generation

To enable GenAssist to generate code that follows ARENA’s syn-
tax, structure, and feature set, we supplement the LLM with addi-
tional context in the form of curated examples and API documen-
tation. Although LLMs are powerful, it is well known that they
can hallucinate and produce incorrect responses, especially when
they lack up-to-date or domain-specific knowledge [18]. This is
especially true for rapidly evolving platforms like ARENA, where
APIs and conventions frequently change, or for complex ecosys-
tems like Unity and Unreal Engine, where the breadth of features
and multiple engine versions can make it difficult for the LLM to
determine which details are most relevant to a given question. Pre-
vious work like LLMR [10] handled this using another LLM call to
identify what information needs to be provided as a context, which
can be expensive and time consuming. To address this, we used
a lightweight RAG-based approach to improve the model’s ability
to produce accurate and relevant code. At a high level, GenAssist
generates code by prompting the LLM with a selected blend of doc-
umentation, usage examples, and the current state of the program.

A key component of this process is retrieving relevant content
from ARENA’s API documentation and example code. By scraping
documentation webpages and code repositories, we create a vector
database of semantic embeddings mapped to text. When a user
queries GenAssist, it will use RAG to tokenize the prompt and re-
trieve the closest semantic matches from the database. The text of
those matches is then injected into the prompt before being sent
to the LLM. By including documentation and examples directly in
the prompt, the system leverages in-context learning [5], which is a
known strength of LLMs, allowing the model to better understand
API usage patterns, coding style, and program structure. We found
that this improves the accuracy of the generated code and reduces
hallucinations.

Furthermore, ARENA includes a public file server of 3D models
(in .gltf/.glb and .obj formats). Using a similar technique as
described above, GenAssist creates a vector database using embed-
dings created from file metadata that can be queried using RAG.
For each user query, we search the vector database to find any 3D
models that might be useful for the LLM to use when generating
the program, allowing for easy model integration into the system.

To maintain program continuity and context, the system also
feeds the current running XR program directly into the prompt.
This allows the LLM to understand what is already present in the
scene and allows it to directly edit the current program. Further-
more, GenAssist appends a history of prior prompts and responses
to preserve the flow of user intent and interactions over time. This
running context ensures that the model’s generation aligns with
both the current scene and the user’s iterative design process. We
provide the template for the context provided to the LLM in Fig. 3.

For our system, we use GPT-4o [1] as the LLM and Chroma-

Mental

Demand Physica
l

Demand
Temporal

Demand
Performance Effort

Frustra
tion

Overall

NASA TLX System

Usability

Score

0

20

40

60

80

100

NA
SA

-T
LX

 /
Sy

st
em

 U
sa

bi
lit

y
Sc

or
e

Figure 4: Average Usability Scores across all participants. A lower
NASA TLX score indicates lower perceived workload (lower is better
for blue and red), while a higher System Usability Score indicates
better usability (higher is better for green).

db [9] as the RAG vector database. We use OpenAI’s embedding
models (specifically text-embedding-ada-002) to embed ARENA
documentation and arena-py examples, with each page or exam-
ple being an entry into the database. Similarly, we also use the same
embedding model for the 3D models, which we save in a separate
chroma-db database.

4 EVALUATION

To be effective, GenAssist must provide a pleasant user experience,
generate plausible and intent-aligned XR programs, and operate
with low overhead. We evaluate the system across these three key
dimensions: (1) User Experience – Does GenAssist lower techni-
cal barriers and enable successful task completion in XR program
creation? (2) Generation Quality – Does it produce XR programs
that are both accurate and consistent with user intent? (3) System
Overhead – What is the runtime cost of the system, measured in
terms of latency and the number of LLM queries required?

4.1 User Experience
To evaluate the user experience of GenAssist, we conducted a study
with 10 participants (7 male and 3 female between the ages of 18
and 55). Each participant received a brief introduction to the system
and its functionalities and was given five minutes to freely explore
GenAssist by generating their own programs and exploring the sys-
tem’s capabilities. After the familiarization phase, participants were
presented with a pre-generated target program and given time to
interact with it and explore its functionality. They were then asked
to use GenAssist to reproduce the program. They were allowed
to make as many prompts as they wished until they were satisfied
with the result. Participants performed this task twice, each time
with a different target program representing a distinct level of dif-
ficulty. Both programs were designed to evaluate how effectively
users could achieve specific goals with the system. To ensure con-
sistency, all participants attempted the same two programs, which
are included in the supplementary material.

After completion of the tasks, the participants were given a
short survey comprising of the NASA Task Load Index (NASA
TLX) [14] and the System Usability Scale (SUS) [4]. The spe-
cific XR programs used for testing and the survey questionnaires
are included in the supplementary material for reference.

Fig. 4 presents the usability results, including the six NASA TLX
metrics, the overall average NASA TLX workload score, and the
SUS score. Lower NASA TLX scores indicate reduced workload
and effort. Our results show a NASA TLX overall score of 39.0 out
of 100, suggesting that using GenAssist imposes a relatively low
cognitive load. Among NASA TLX metrics, performance had the
highest score (indicating a higher perceived difficulty in being suc-

5

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/

© 2025 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

GenAssist GenAssist
(No Feedback)

GPT-4 Only LLMR
3.2

3.6

4.0

4.4

4.8

5.2

5.6

6.0

6.4

6.8

7.2

7.6
Pr

ed
ict

ed
 R

at
in

g

Figure 5: Estimated system effects from the linear mixed effects
model with 95% confidence intervals. Coefficients represent the ac-
tual rating values predicted by the model. Higher the value, higher
the rating which is out of 10.

cessful in the task), which aligns with participant feedback. Users
reported that generating correct output sometimes required mul-
tiple iterations of prompting, particularly for complex programs.
This iterative re-prompting process increased the perceived effort to
successfully complete the task, although the participants acknowl-
edged that this would be much easier than writing code to generate
these programs.

In contrast, the System Usability Scale (SUS), where a higher
score indicates more usability, yielded a score of 69 for GenAs-
sist. With 68 generally considered average, this suggests that the
system is reasonably usable. Although SUS provides a useful over-
all measure of perceived usability, we place greater emphasis on
the NASA TLX results for this evaluation. NASA TLX captures a
broader picture of user experience by measuring perceived work-
load across dimensions such as mental demand, effort, and frustra-
tion. This makes it particularly well-suited for evaluating systems
like GenAssist, where user effort can be affected not just by the in-
terface but also by the behavior of the underlying model. For exam-
ple, instances where users needed to re-prompt the system to refine
outputs contributed directly to higher perceived workload. As such,
the NASA TLX offers a more comprehensive understanding of how
challenging or demanding the system is to use in practice.

4.2 Generation Accuracy

Our goal is to evaluate the accuracy of GenAssist in generating XR
programs. However, defining what constitutes an “accuracate” or a
“good” output in this context is inherently subjective. For instance,
a prompt such as “make a car” could be satisfied by a simple 3D
car model, by a basic construction using a rectangular cube with
four cylinders as wheels, or by a more detailed, higher-fidelity car
composed of primitives with windows, realistic proportions, and
additional features.

While prior work has reported accuracy and error metrics, the
underlying evaluation methods can be unclear or insufficiently de-
tailed. To address this gap, we conducted a study in which par-
ticipants, referred to here as raters, evaluated the correctness of
XR programs generated from their prompts. Each program was
assessed along four distinct metrics, described below, using a 10-
point scale.
Program Correctness Metrics:

1. Prompt Match: How closely does the XR program align with
the input prompt?

2. Object Placement: How well are the objects positioned
within the scene?

3. Functionality: Does the program behave and function as ex-
pected?

4. Overall Quality: What is the overall perceived quality of the
experience?

For comparison, we compare four text-to-scene systems, in-
cluding GenAssist: (1) GenAssist, (2) GenAssist (No Feedback,
RAG Only), (3) GPT-4o only (No Feedback, No RAG), and (4)
LLMR [10], a recent state-of-the-art system for Unity program
generation.

We curate a set of 50 prompts across five categories of increasing
complexities. We create a taxonomy of prompts based on the skills
and techniques we expect a non-expert user to use when generat-
ing simple XR programs. Each category consists of 10 prompts.
Some are drawn directly from the LLMR evaluation set, while oth-
ers were newly created to reflect practical tasks users might attempt
or to highlight the capabilities of the ARENA platform. The full set
of prompts is provided in the supplementary material. This taxon-
omy consists of: (1) Object Placement (2) Animations (3) Inter-
activity, (4) Complex Programs Combining Multiple Features,
and (5) Iterative Program Generation.

For the study, we recruited 15 raters with varying levels of famil-
iarity with XR. Each rater evaluated the output of 40 prompts (dis-
tributed across the 4 systems and 5 program categories), with each
prompt’s output assessed by three different raters. Prompt assign-
ments were randomized: some raters evaluated the same prompt
across all systems, while others reviewed different prompts and sys-
tems. This design was intended to mitigate potential bias and ensure
a diversity of scoring perspectives.

Given multiple sources of variability (system, prompt, metric,
rater), we use a linear mixed-effects model [32] to estimate system
effects while controlling for prompt difficulty and rater stringency.
Systems and the program correctness metric are modeled as fixed
effects while prompts and raters receive random intercepts, con-
trolling for confounding factors like prompt difficulty or rater bias.
This lets us attribute differences in ratings to the systems and met-
rics rather than variations in specific prompts or raters. We define
our model as follows:

Rating ∼ System+Metric (1)

This is broken down into more detail:

Ratingi, j,k = β0 +βSystem ·Systemi, j,k +βMetric ·Metrici, j,k

+ui + vk + εi, j,k (2)

Where:
i, j,k : Individual rater index, Rater ID, prompt index.
β0 = 5.377 : Intercept term (baseline for GPT-4o Only system).
βSystem : Fixed effect for system type:

• 7.304 for GenAssist (p < 0.001).
• 6.180 for GenAssist (No Feedback) (p < 0.001).
• 3.479 for LLMR (p < 0.001).

βMetric : Fixed effect for metric values.
ui, vk : Rater-level and Prompt-level random intercept.
εi, j,k : Residual error.

The baseline condition in our mixed-effects model corresponds
to the GPT-4o Only system, representing GenAssist without re-
trieval or feedback. As shown in Fig. 5, the full GenAssist sys-
tem outperforms its ablated variants and baselines, achieving a pre-
dicted rating of 7.304, compared to 6.180 for GenAssist without
feedback, 5.377 for GPT-4o, and 3.479 for LLMR, even after ac-
counting for variability across raters and prompts. These results
provide strong evidence that the closed-loop GenAssist system pro-
duces more reliable and higher-quality outputs. In particular, they
underscore the effectiveness of incorporating a feedback mecha-
nism to identify and correct hallucinations, as well as the use of

6

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/

© 2025 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

A:
Object

Placement

B:
Animations

C:
Interactivity

D:
Complex
Prompts

E:
Iterative

Generation
Program Categories

0
1
2
3
4
5
6
7
8

Pr
ed

ict
ed

 R
at

in
g

Systems
GenAssist GenAssist

(No Feedback) GPT-4 Only

Figure 6: Accuracy of outputs across prompt categories for each sys-
tem. Reported values are z-scores, obtained by normalizing ratings
within each rater.

RAG to enhance robustness across a wide range of task complexi-
ties.

We acknowledge that comparisons between GenAssist and
LLMR are not direct for several reasons. First, LLMR was de-
veloped for Unity C#, whereas GenAssist generates Python code
for ARENA. While Unity is more prevalent in XR development,
Python is more widely represented in LLM training data overall,
creating different baseline capabilities. Second, LLMR uses GPT-
4 while our system leverages GPT-4o. Updating LLMR to use
GPT-4o would require non-trivial modifications to its multi-stage
prompt pipeline and Unity-specific examples, potentially compro-
mising the integrity of the original system design. Therefore, we
include LLMR as a contextual comparison to generally understand
where our system stands compared to prior work, rather than a sta-
tistically significant performance claim. Our core contributions—
specifically, the effectiveness of RAG and visual feedback—are val-
idated through ablation studies on GenAssist variants, which enable
controlled comparisons under identical infrastructure.

To further investigate how the performance of the different sys-
tems vary across prompt categories, we model the data with another
mixed-effects model specified as follows:

Rating ∼ System×Category+Metric (3)

This model allows us to gain insight on how the ratings vary for
different systems for the different prompt categories A through E,
which are shown in Fig. 6. We exclude LLMR from this category-
wise analysis as it serves as a contextual comparison rather than
a direct baseline, with the overall performance comparison shown
above in Fig. 5 being sufficient to situate our work. Across all cate-
gories, GenAssist consistently outperforms its ablated variants. In-
terestingly, for simpler prompts (Category A), the RAG-only vari-
ant, GenAssist (No Feedback, RAG Only), underperforms. Upon
closer analysis, we found that this was often due to irrelevant re-
trievals. For simpler tasks, the language model and the few-shot
examples in the prompt are usually sufficient to generate correct
code. However, when extraneous documents are retrieved, the
model tends to over-prioritize them, leading to hallucinated or in-
correct outputs. This issue stems from the model’s strong bias to-
ward its immediate context [6, 45], causing it to pay attention to
less relevant information even when simpler logic would suffice.

Thus, in isolation, RAG may not be as helpful and can even
hinder performance in basic, straightforward tasks like category
A. However, when combined with closed-loop feedback, the sys-
tem can identify and recover from these errors, preserving strong
performance even on simple prompts. However, for more com-
plex prompts, the additional retrieved context becomes significantly

System Components Average Time Taken (s)
Program Generation 9.928

Retrieval of Documentation
and Examples

4.414

Retreival of 3D Models 0.478
Queries to LLM (GPT-4) 5.036

Program Correction 14.173
Get bounding boxes of ob-

jects in the scene
0.152

Get screenshot of the scene 3.792
Queries to LLM (GPT-4) 10.229

Table 1: Average time taken for the Program Generation and Pro-
gram Correction stages.

more useful, as it provides the model with examples or patterns that
may not be covered by the initial prompt itself. This demonstrates
that retrieval is particularly effective when prompt complexity in-
creases, but must be paired with mechanisms like feedback to en-
sure robustness across the full range of task difficulty.

4.3 System Overhead
To evaluate the run-time cost of GenAssist, we measured both sys-
tem latency and the average number of LLM queries required dur-
ing program generation and correction. These factors directly im-
pact the system’s responsiveness and determine its practicality for
interactive use.

Each generation cycle introduces several sources of latency. For
every user prompt, the system performs a retrieval of relevant doc-
umentation and example code, as well as 3D models to construct
the LLM prompt context. Although this step adds some delay, the
most significant overhead comes from the LLM response time dur-
ing code generation. Once generated, running the program has neg-
ligible overhead due to ARENA’s hot-pluggable execution model.
The scene correction loop also introduces additional latency. Cap-
turing scene screenshots and extracting 3D bounding boxes of all
the objects in the scene adds runtime costs. However, as with the
generation cycle, the LLM response time is the dominant factor in
this phase.

Since the number of generation and correction cycles needed
vary based on prompt complexity and the number of times the cor-
rector needs to be called, we report these costs separately. Specif-
ically, we measure (1) the average time taken for initial program
generation, (2) the average time per correction cycle, and (3) the
average number of LLM queries required per program.

Our analyses focuses on four of the five prompt categories used
in the generation quality evaluation in Sec. 4.2. We exclude the
Iterative Scene Generation category because it involves multiple
user inputs by design, making it difficult to compare directly with
the other categories. In iterative cases, the number of input prompts
and consequently, the number of LLM calls are highly variable and
task dependent.

Tab. 1 summarizes the system latency for various components of
GenAssist.

Because LLM calls are the main driver of latency and cost, we
report the average number of LLM calls needed to generate XR
programs for the different prompt categories in Tab. 2. Simple
prompts generally require only a single LLM query, with no cor-
rections needed to produce a correct response. In contrast, more
complex prompts, particularly those involving animations or inter-
activity, often need multiple correction cycles before a satisfactory
program is generated. In addition, the number of lines in the pro-
gram, which corresponds to the length of the LLM output, directly
impacts generation time. Therefore, our reported values represent
averages across varying levels of complexity and program lengths.
The reported number of LLM queries reflects the total across both

7

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/

© 2025 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

Program Category Average Number of
LLM Queries

Object Placement 1.90±2.07
Animations 2.10±1.58
Interactivity 2.10±1.22
Complex Programs Combining
Multiple Features

3.10±2.98

Table 2: Average number of calls to LLMs needed to generate the
program for the first 4 categories of programs. The first query corre-
sponds to the prompt from the user sent ot the program generator,
and any subsequent ones refer to the queries made to the program
corrector. The fifth category (Iterative Scene Generation) is not eval-
uated here as the number of prompts used as input vary based on
the task.

Figure 7: Example usage of GenAssist to create educational 3D pro-
grams. Here the plant is annotated with clickable cards to learn about
various parts of a plant in an interactive and engaging way.

generation and correction stages. Since we exclude the Iterative
Scene Generation category, there is only one query for program
generation and any additional queries are from the scene correc-
tor. In general, our system takes less than 10 seconds to generate
the program code with each iteration of the corrector taking 14.2
seconds. Overall, even under the assumption that GenAssist re-
quires on average one LLM call for program generation and an ad-
ditional call for program correction, the total wait time of our sys-
tem is 24.10 seconds, which is approximately 3.7× lower than
the 90.98 seconds required by LLMR, the current state of the
art.

It is important to note that determining when a program is “com-
plete” is inherently subjective. Our reported averages reflect the ob-
served number of LLM queries during evaluation and serve as ball-
park estimates of system overhead rather than strict upper bounds.

5 APPLICATIONS

GenAssist can have a wide range of use cases, spanning both prac-
tical scenarios and open-ended creative tasks. In this section, we
highlight several example applications that demonstrate how the
system can be used to build interactive 3D experiences in domains
such as education, remote assistance, and entertainment.

5.1 Interactive Educational Content
GenAssist can be used to create immersive and interactive educa-
tional experiences in 3D, ranging from intractable visualizations of
educational concepts to more structured tools like labeled 3D mod-
els, flashcards, and interactive quizzes. For example, a biology in-
structor could generate a scene which includes a model of a plant
with clickable parts that reveal descriptions, or a history teacher
could create a virtual exhibit that students can explore. Because
most educators are not experts in XR programming, tools that al-
low them to easily author and modify content can be extremely

Figure 8: Example usage of GenAssist to create a animated dragon
that breathes fire next to a castle.

useful in the classroom to quickly drive up excitement. Interac-
tivity is especially important for engagement and comprehension
in learning environments, and GenAssist allows educational con-
tent to be created and adapted dynamically based on the needs of
the learner. This opens the door to personalized and responsive ed-
ucational tools without requiring specialized XR knowledge. An
example scene can be seen in Fig. 7.

5.2 Creative Exploration and Game Design

GenAssist enables novice users to create simple games and ex-
periment with interactive 3D content without needing to write
code. It functions as a creative playground, allowing users to ex-
plore the possibilities of XR programming through natural language
prompts. One such example can be seen in Fig. 8.

5.3 Remote Assistance

In current remote assistance scenarios, such as helping someone
troubleshoot equipment through VR streaming, guidance is typi-
cally limited to voice communication. However, voice alone can
often be ambiguous or hard to follow, especially during complex or
multi-step tasks. While some systems now support remote annota-
tions, these features are often constrained to basic markup and lack
the flexibility to add richer or more interactive content within the
scene. With GenAssist, a remote assistant can quickly create 3D
annotations, overlays, or even interactive elements directly within
the user’s XR environment. Because GenAssist operates in natu-
ral language, these can be made on the fly, making remote support
sessions more effective, interactive, and intuitive. For example, dur-
ing a filter-replacement procedure, the expert says: “Create a float-
ing checklist titled ‘Filter Replacement’, highlight the intake valve,
draw an arrow to the release latch, load filter.glb and place it
over the target socket, add a ‘Next’ button that advances the check-
list when clicked.” GenAssist generates the ARENA code to spawn
these elements and bind cursor clicks or proximity triggers to the
step logic, reducing ambiguity compared to voice-only guidance.

5.4 Guided Task Assistance

GenAssist can be used to create XR programs that assist with
physical-world tasks by providing contextual visual guidance. For
example, it can generate annotated 3D scenes that illustrate how to
operate a device or perform a step-by-step procedure. These vir-
tual guides can include arrows, labels, and interactive elements to
help users follow along more effectively. By lowering the barrier
to authoring such assistants, GenAssist makes it easier to create
customized instruction manuals and AR overlays without requiring
technical expertise. It also enables the assistance to adapt to the
user’s actions for more responsive and personalized guidance.

8

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/

© 2025 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

6 DISCUSSION

Although GenAssist enables the generation of natural language-
driven XR programs with iterative refinement, it does have limita-
tions. The system’s feedback loop relies on visual observations of
the current scene, specifically a rendered image, the 3D bounding
boxes of all objects, and the current program code. In addition, it in-
corporates any run-time errors or stack traces that appear in the exe-
cution logs. This setup allows the model to detect and fix issues re-
lated to object positioning, sizing, visibility, or syntax and runtime
errors. However, this feedback loop does not capture behavioral is-
sues unless they show up as explicit errors or visible mismatches.
For example, problems related to animations, event-driven logic, or
interactivity, such as a button that fails to trigger an expected action,
may not be detected unless they result in a scene that looks visually
incorrect or raise an exception. As a result, some errors may go
undetected. Addressing this would likely require integrating richer
sources of runtime context, such as interaction traces or event logs.

Another challenge is reliance on embedding-based retrieval for
API documentation and examples. While RAG improves LLM re-
sponses by retrieving semantically similar examples, it often re-
trieves documents that share keywords with the prompt, rather than
those that reflect its compositional or structural intent. For example,
a prompt like “create a car and make it drive” can lead to individ-
ual results related to cars or driving animations, but not the neces-
sary primitives or logic to combine them into a coherent and func-
tioning scene. Improving retrieval may require more task-specific
representations or retrievers trained to support such tasks.

GenAssist targets accessibility and rapid prototyping rather than
production-level XR applications. While the generated programs
handle object placement, animations, and basic interactions effec-
tively, more complex scenarios (e.g., advanced physics simulations,
custom materials, or sophisticated AI behaviors) would still require
traditional development approaches or further advancements in the
system.

Finally, the current 3D model search approach involves a trade-
off between ease of use and retrieval quality. We initially ex-
plored using the Sketchfab API for dynamic model search, but its
keyword-based matching often produced results that were incon-
sistent or poorly suited to the prompt. To improve reliability, we
instead pre-downloaded a curated set of models and indexed their
metadata using embeddings. These models must then be added to
the ARENA model database to be usable, which introduces setup
overhead and limits flexibility. Although this process is more man-
ual, it yielded significantly better results in practice. We will share
our Sketchfab integration in our open-source code releases to sup-
port future improvements and allow the community to create alter-
native retrieval strategies.

7 CONCLUSION

We present GenAssist, a system for generating XR programs from
natural language prompts by combining retrieval-augmented gen-
eration, a visual feedback loop, and hot-pluggable code execution.
It allows users to iteratively build scenes that include object place-
ment, simple animations, and basic interactivity, without writing
code manually. Compared to existing systems, GenAssist achieves
higher output accuracy and significantly lower latency, making it
well suited for rapid XR prototyping. By reducing the technical
barriers to creating and modifying XR content, it offers a practical
tool for both novices and experienced developers.

REFERENCES

[1] Openai gpt-4o. https://openai.com/index/hello-gpt-4o,
2024. Online. Accessed: July 2024. 4, 5

[2] Adobe. Adobe aero. Accessed: 2025-03-12. 2
[3] A. Blattmann, R. Rombach, K. Oktay, J. Müller, and B. Ommer.

Retrieval-augmented diffusion models. In S. Koyejo, S. Mohamed,

A. Agarwal, D. Belgrave, K. Cho, and A. Oh, eds., Advances in Neu-
ral Information Processing Systems, vol. 35, pp. 15309–15324. Curran
Associates, Inc., 2022. 3

[4] J. Brooke. SUS – a quick and dirty usability scale, pp. 189–194. 01
1996. 5

[5] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhari-
wal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,
M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish,
A. Radford, I. Sutskever, and D. Amodei. Language models are few-
shot learners, 2020. 5

[6] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhari-
wal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,
M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish,
A. Radford, I. Sutskever, and D. Amodei. Language models are few-
shot learners, 2020. 7

[7] A. X. Chang, M. Eric, M. Savva, and C. D. Manning. Sceneseer: 3d
scene design with natural language. arXiv preprint arXiv:1703.00050,
2017. 2

[8] Y. Cheng, Y. Yan, X. Yi, Y. Shi, and D. Lindlbauer. Semanticadapt:
Optimization-based adaptation of mixed reality layouts leveraging
virtual-physical semantic connections. UIST ’21, p. 282–297. As-
sociation for Computing Machinery, New York, NY, USA, 2021. doi:
10.1145/3472749.3474750 2

[9] Chroma. Chroma - the open-source embedding database, 2023. Ac-
cessed: 2025-03-30. 5

[10] F. De La Torre, C. M. Fang, H. Huang, A. Banburski-Fahey,
J. Amores Fernandez, and J. Lanier. Llmr: Real-time prompting of
interactive worlds using large language models. In Proceedings of the
2024 CHI Conference on Human Factors in Computing Systems, pp.
1–22, 2024. 3, 5, 6

[11] Epic Games. Unreal engine. 2
[12] P. J. B. et al. Genie 3: A new frontier for world models. 2025. 2
[13] D. Giunchi, N. Numan, E. Gatti, and A. Steed. Dreamcodevr: To-

wards democratizing behavior design in virtual reality with speech-
driven programming. In 2024 IEEE Conference Virtual Reality and
3D User Interfaces (VR), pp. 579–589, 2024. doi: 10.1109/VR58804
.2024.00078 3

[14] S. G. Hart and L. E. Staveland. Development of nasa-tlx (task load
index): Results of empirical and theoretical research. Human mental
workload, 1(3):139–183, 1988. 5

[15] L. Höllein, A. Cao, A. Owens, J. Johnson, and M. Nießner.
Text2room: Extracting textured 3d meshes from 2d text-to-image
models. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pp. 7909–7920, October 2023. 2

[16] Z. Hu, A. Iscen, A. Jain, T. Kipf, Y. Yue, D. A. Ross, C. Schmid,
and A. Fathi. Scenecraft: An llm agent for synthesizing 3d scene as
blender code, 2024. 3

[17] I. Huang, G. Yang, and L. Guibas. Blenderalchemy: Editing 3d graph-
ics with vision-language models, 2024. 3

[18] L. Huang, W. Yu, W. Ma, W. Zhong, Z. Feng, H. Wang, Q. Chen,
W. Peng, X. Feng, B. Qin, and T. Liu. A survey on hallucination in
large language models: Principles, taxonomy, challenges, and open
questions. ACM Transactions on Information Systems, 43(2):1–55,
Jan. 2025. doi: 10.1145/3703155 5

[19] N. Jennings, H. Wang, I. Li, J. Smith, and B. Hartmann. What’s the
game, then? opportunities and challenges for runtime behavior gen-
eration. In Proceedings of the 37th Annual ACM Symposium on User
Interface Software and Technology, UIST ’24. Association for Com-
puting Machinery, New York, NY, USA, 2024. doi: 10.1145/3654777
.3676358 3

[20] H. Jun and A. Nichol. Shap-e: Generating conditional 3d implicit
functions, 2023. 2

[21] A. Kaintura, P. R, S. S. Luar, and I. I. Almeida. Orassistant: A custom
rag-based conversational assistant for openroad, 2024. 4

[22] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel, et al. Retrieval-

9

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/
https://openai.com/index/hello-gpt-4o

© 2025 IEEE. This is the author’s version of the article that has been published in the proceedings of IEEE Visualization
conference. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

augmented generation for knowledge-intensive nlp tasks. Advances
in neural information processing systems, 33:9459–9474, 2020. 3

[23] X. Li, Y. Gong, Y. Shen, X. Qiu, H. Zhang, B. Yao, W. Qi, D. Jiang,
W. Chen, and N. Duan. Coderetriever: A large scale contrastive pre-
training method for code search. In Proceedings of the 2022 confer-
ence on empirical methods in natural language processing, pp. 2898–
2910, 2022. 3

[24] C.-H. Lin, J. Gao, L. Tang, T. Takikawa, X. Zeng, X. Huang, K. Kreis,
S. Fidler, M.-Y. Liu, and T.-Y. Lin. Magic3d: High-resolution text-
to-3d content creation. In 2023 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 300–309, 2023. doi: 10.
1109/CVPR52729.2023.00037 2

[25] D. Lindlbauer, A. M. Feit, and O. Hilliges. Context-aware online
adaptation of mixed reality interfaces. In Proceedings of the 32nd
Annual ACM Symposium on User Interface Software and Technology,
UIST ’19, p. 147–160. Association for Computing Machinery, New
York, NY, USA, 2019. doi: 10.1145/3332165.3347945 2

[26] R. Ma, A. G. Patil, M. Fisher, M. Li, S. Pirk, B.-S. Hua, S.-K. Yeung,
X. Tong, L. Guibas, and H. Zhang. Language-driven synthesis of 3d
scenes from scene databases. ACM Trans. Graph., 37(6), Dec. 2018.
doi: 10.1145/3272127.3275035 2

[27] Microsoft. Mixed reality toolkit, 2023. Accessed: 2025-03-12. 2
[28] Microsoft. Playwright, 2023. 4
[29] M. Mukherjee and V. J. Hellendoorn. Sosecure: Safer code generation

with rag and stackoverflow discussions, 2025. 4
[30] M. R. Parvez, W. U. Ahmad, S. Chakraborty, B. Ray, and K.-W.

Chang. Retrieval augmented code generation and summarization,
2021. 3

[31] N. Pereira, A. Rowe, M. W. Farb, I. Liang, E. Lu, and E. Riebling.
Arena: The augmented reality edge networking architecture. In 2021
IEEE International Symposium on Mixed and Augmented Reality (IS-
MAR), pp. 479–488, 2021. doi: 10.1109/ISMAR52148.2021.00065
2

[32] J. C. Pinheiro and D. M. Bates. Mixed-effects models in S and S-PLUS.
Springer, New York, NY [u.a.], 2000. 6

[33] B. Poole, A. Jain, J. T. Barron, and B. Mildenhall. Dreamfusion: Text-
to-3d using 2d diffusion, 2022. 2

[34] W. Qian, C. Gao, A. Sathya, R. Suzuki, and K. Nakagaki. Shape-it:
Exploring text-to-shape-display for generative shape-changing behav-
iors with llms. In Proceedings of the 37th Annual ACM Symposium
on User Interface Software and Technology, UIST ’24. Association
for Computing Machinery, New York, NY, USA, 2024. doi: 10.1145/
3654777.3676348 3

[35] J. Roberts, A. Banburski-Fahey, and J. Lanier. Surreal vr pong: Llm
approach to game design. In 36th Conference on Neural Information
Processing Systems (NeurIPS 2022), December 2022. 3

[36] J. Seo, S. Hong, W. Jang, M.-S. Kwak, H. Kim, D. Lee, and S. Kim.
Retrieval-augmented text-to-3d generation, 2024. 3

[37] C. Sun, J. Han, W. Deng, X. Wang, Z. Qin, and S. Gould. 3d-gpt:
Procedural 3d modeling with large language models, 2024. 3

[38] Unity Technologies. Unity, 2023. Game development platform. 2
[39] Y. Wang, S. Guo, and C. W. Tan. From code generation to software

testing: Ai copilot with context-based rag. IEEE Software, pp. 1–9,
2025. doi: 10.1109/MS.2025.3549628 4

[40] Z. Z. Wang, A. Asai, X. V. Yu, F. F. Xu, Y. Xie, G. Neubig, and
D. Fried. Coderag-bench: Can retrieval augment code generation?,
2025. 3

[41] Z. Xiao, X. He, H. Wu, B. Yu, and Y. Guo. Eda-copilot: A rag-
powered intelligent assistant for eda tools. ACM Trans. Des. Autom.
Electron. Syst., Jan. 2025. Just Accepted. doi: 10.1145/3715326 4

[42] A. XR. arena-py: Python library for accessing the arena. https:
//github.com/arenaxr/arena-py. 4

[43] Y. Xu, Y. Ng, Y. Wang, I. Sa, Y. Duan, Y. Li, P. Ji, and H. Li.
Sketch2scene: Automatic generation of interactive 3d game scenes
from user’s casual sketches. arXiv preprint arXiv:2408.04567, 2024.
2

[44] Y. Yang, F.-Y. Sun, L. Weihs, E. VanderBilt, A. Herrasti, W. Han,
J. Wu, N. Haber, R. Krishna, L. Liu, C. Callison-Burch, M. Yatskar,
A. Kembhavi, and C. Clark. Holodeck: Language guided generation
of 3d embodied ai environments, 2024. 3

[45] Z. Yang, S. Chen, C. Gao, Z. Li, X. Hu, K. Liu, and X. Xia. An
empirical study of retrieval-augmented code generation: Challenges
and opportunities. ACM Trans. Softw. Eng. Methodol., Feb. 2025. Just
Accepted. doi: 10.1145/3717061 4, 7

[46] J. Zamfirescu-Pereira, E. Jun, M. Terry, Q. Yang, and B. Hartmann.
Beyond code generation: Llm-supported exploration of the program
design space. In Proceedings of the 2025 CHI Conference on Hu-
man Factors in Computing Systems, CHI ’25. Association for Com-
puting Machinery, New York, NY, USA, 2025. doi: 10.1145/3706598
.3714154 3

[47] L. Zhang and S. Oney. Flowmatic: An immersive authoring tool for
creating interactive scenes in virtual reality. In Proceedings of the 33rd
Annual ACM Symposium on User Interface Software and Technology,
UIST ’20, p. 342–353. Association for Computing Machinery, New
York, NY, USA, 2020. doi: 10.1145/3379337.3415824 2

[48] L. Zhang, J. Pan, J. Gettig, S. Oney, and A. Guo. Vrcopilot: Author-
ing 3d layouts with generative ai models in vr. In Proceedings of the
37th Annual ACM Symposium on User Interface Software and Tech-
nology, UIST ’24. Association for Computing Machinery, New York,
NY, USA, 2024. doi: 10.1145/3654777.3676451 3

10

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/
https://github.com/arenaxr/arena-py
https://github.com/arenaxr/arena-py

	Introduction
	Related Work
	XR Prototyping and Generation
	RAG for Code Generation

	System Design
	Code Generation for ARENA
	Iterative Scene Correction Feedback Loop
	XR Program Generation with Retrieval-Augmented Generation

	Evaluation
	User Experience
	Generation Accuracy
	System Overhead

	Applications
	Interactive Educational Content
	Creative Exploration and Game Design
	Remote Assistance
	Guided Task Assistance

	Discussion
	Conclusion

